166 research outputs found

    Evaluation of peak-picking algorithms for protein mass spectrometry

    Get PDF
    Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves

    Nonnegative principal component analysis for mass spectral serum profiles and biomarker discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a novel cancer diagnostic paradigm, mass spectroscopic serum proteomic pattern diagnostics was reported superior to the conventional serologic cancer biomarkers. However, its clinical use is not fully validated yet. An important factor to prevent this young technology to become a mainstream cancer diagnostic paradigm is that robustly identifying cancer molecular patterns from high-dimensional protein expression data is still a challenge in machine learning and oncology research. As a well-established dimension reduction technique, PCA is widely integrated in pattern recognition analysis to discover cancer molecular patterns. However, its global feature selection mechanism prevents it from capturing local features. This may lead to difficulty in achieving high-performance proteomic pattern discovery, because only features interpreting global data behavior are used to train a learning machine.</p> <p>Methods</p> <p>In this study, we develop a nonnegative principal component analysis algorithm and present a nonnegative principal component analysis based support vector machine algorithm with sparse coding to conduct a high-performance proteomic pattern classification. Moreover, we also propose a nonnegative principal component analysis based filter-wrapper biomarker capturing algorithm for mass spectral serum profiles.</p> <p>Results</p> <p>We demonstrate the superiority of the proposed algorithm by comparison with six peer algorithms on four benchmark datasets. Moreover, we illustrate that nonnegative principal component analysis can be effectively used to capture meaningful biomarkers.</p> <p>Conclusion</p> <p>Our analysis suggests that nonnegative principal component analysis effectively conduct local feature selection for mass spectral profiles and contribute to improving sensitivities and specificities in the following classification, and meaningful biomarker discovery.</p

    Genome-wide estimation of gender differences in the gene expression of human livers: Statistical design and analysis

    Get PDF
    BACKGROUND: Gender differences in gene expression were estimated in liver samples from 9 males and 9 females. The study tested 31,110 genes for a gender difference using a design that adjusted for sources of variation associated with cDNA arrays, normalization, hybridizations and processing conditions. RESULTS: The genes were split into 2,800 that were clearly expressed (expressed genes) and 28,310 that had expression levels in the background range (not expressed genes). The distribution of p-values from the 'not expressed' group was consistent with no gender differences. The distribution of p-values from the 'expressed' group suggested that 8 % of these genes differed by gender, but the estimated fold-changes (expression in males / expression in females) were small. The largest observed fold-change was 1.55. The 95 % confidence bounds on the estimated fold-changes were less than 1.4 fold for 79.3 %, and few (1.1%) exceed 2-fold. CONCLUSION: Observed gender differences in gene expression were small. When selecting genes with gender differences based upon their p-values, false discovery rates exceed 80 % for any set of genes, essentially making it impossible to identify any specific genes with a gender difference

    Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information.</p> <p>Results</p> <p>In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data.</p> <p>Conclusions</p> <p>Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.</p

    Assessing the Role of CD103 in Immunity to an Intestinal Helminth Parasite

    Get PDF
    In the intestine, the integrin CD103 is expressed on a subset of T regulatory (T(reg)) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103(+) DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c(+) DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103(-/-)) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103(-/-) mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4(+)CD25(+)Foxp3(+) T(reg) cells in the mLN or LP.These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or T(reg) recruitment or retention within the large intestine

    Prospects for a Statistical Theory of LC/TOFMS Data

    Get PDF
    The critical importance of employing sound statistical arguments when seeking to draw inferences from inexact measurements is well-established throughout the sciences. Yet fundamental statistical methods such as hypothesis testing can currently be applied to only a small subset of the data analytical problems encountered in LC/MS experiments. The means of inference that are more generally employed are based on a variety of heuristic techniques and a largely qualitative understanding of their behavior. In this article, we attempt to move towards a more formalized approach to the analysis of LC/TOFMS data by establishing some of the core concepts required for a detailed mathematical description of the data. Using arguments that are based on the fundamental workings of the instrument, we derive and validate a probability distribution that approximates that of the empirically obtained data and on the basis of which formal statistical tests can be constructed. Unlike many existing statistical models for MS data, the one presented here aims for rigor rather than generality. Consequently, the model is closely tailored to a particular type of TOF mass spectrometer although the general approach carries over to other instrument designs. Looking ahead, we argue that further improvements in our ability to characterize the data mathematically could enable us to address a wide range of data analytical problems in a statistically rigorous manner

    Training with anxiety: short- and long-term effects on police officers’ shooting behavior under pressure

    Get PDF
    We investigated short- and long-term effects of training with anxiety on police officers’ shooting behavior under pressure. Using a pretest, posttest, and retention test design, 27 police officers executed a shooting exercise against an opponent that did (high anxiety) or did not (low anxiety) shoot back using colored soap cartridges. During the training sessions, the experimental group practiced with anxiety and the control group practiced without anxiety. At the pretest, anxiety had a negative effect on shot accuracy for both groups. At the posttest, shot accuracy of the experimental group no longer deteriorated under anxiety, while shot accuracy of the control group was still equally affected. At the retention test, 4 months after training, positive results for the experimental group remained present, indicating that training with anxiety may have positive short- and long-term effects on police officers’ shot accuracy under pressure. Additional analyses showed that these effects are potentially related to changes in visual attention on task-relevant information

    A simpler method of preprocessing MALDI-TOF MS data for differential biomarker analysis: stem cell and melanoma cancer studies

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Raw spectral data from matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) with MS profiling techniques usually contains complex information not readily providing biological insight into disease. The association of identified features within raw data to a known peptide is extremely difficult. Data preprocessing to remove uncertainty characteristics in the data is normally required before performing any further analysis. This study proposes an alternative yet simple solution to preprocess raw MALDI-TOF-MS data for identification of candidate marker ions. Two in-house MALDI-TOF-MS data sets from two different sample sources (melanoma serum and cord blood plasma) are used in our study.</p> <p>Method</p> <p>Raw MS spectral profiles were preprocessed using the proposed approach to identify peak regions in the spectra. The preprocessed data was then analysed using bespoke machine learning algorithms for data reduction and ion selection. Using the selected ions, an ANN-based predictive model was constructed to examine the predictive power of these ions for classification.</p> <p>Results</p> <p>Our model identified 10 candidate marker ions for both data sets. These ion panels achieved over 90% classification accuracy on blind validation data. Receiver operating characteristics analysis was performed and the area under the curve for melanoma and cord blood classifiers was 0.991 and 0.986, respectively.</p> <p>Conclusion</p> <p>The results suggest that our data preprocessing technique removes unwanted characteristics of the raw data, while preserving the predictive components of the data. Ion identification analysis can be carried out using MALDI-TOF-MS data with the proposed data preprocessing technique coupled with bespoke algorithms for data reduction and ion selection.</p

    Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer

    Get PDF
    The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts
    corecore